secret transformation algorithm - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

secret transformation algorithm - перевод на русский

DIVIDING POLYNOMIALS SIMILAR TO LONG DIVISION FOR REGULAR NUMBERS
Polynomial division; Polynomial remainder; Polynomial division algorithm; Division transformation
Найдено результатов: 1278
secret transformation algorithm      
алгоитм секретных преобразований
secret society         
  • Hongmen]] seal, 19th century<ref>Alexander Wylie: Secret Societies in China, in ''China Researches'', p. 131, 1897 Shanghai, reprinted in US by Nabu Public Domain Reprints</ref>
CLUB OR ORGANIZATION WHOSE ACTIVITIES AND INNER FUNCTIONING ARE CONCEALED FROM NON-MEMBERS
Crypto-society; Secret societies; Crypto-societies; Secret Societies; Campus based secret societies; Secret lodge; Secret Society; Secret organization; Secret ogranization; Secrete society; Societies, Secret; Secretive organization; Maennerbuende; Secret order; Secret orders; Secretist society; Secretist societies; Flamma satus; Underground society; Societies of secrets; Society of secrets; Criminal society
тайный союз
continuous transformation         
  •  Original image (based on the map of France)
  •  [[Isometry]]
  • Similarity]]
  •  [[Affine transformation]]
  •  [[Projective transformation]]
  • Inversion]]
  •  [[Conformal transformation]]
  • Equiareal transformation]]
  •  [[Homeomorphism]]
  •  [[Diffeomorphism]]
BIJECTION OF A SET HAVING SOME GEOMETRIC STRUCTURE TO ITSELF OR ANOTHER SUCH SET
Discrete transformation; Continuous transformation; Transformation (combinatorics); Transformation (geometry); Geometrical transformation; Partial transformation; Geometric transformations

математика

непрерывное преобразование

discrete transformation         
  •  Original image (based on the map of France)
  •  [[Isometry]]
  • Similarity]]
  •  [[Affine transformation]]
  •  [[Projective transformation]]
  • Inversion]]
  •  [[Conformal transformation]]
  • Equiareal transformation]]
  •  [[Homeomorphism]]
  •  [[Diffeomorphism]]
BIJECTION OF A SET HAVING SOME GEOMETRIC STRUCTURE TO ITSELF OR ANOTHER SUCH SET
Discrete transformation; Continuous transformation; Transformation (combinatorics); Transformation (geometry); Geometrical transformation; Partial transformation; Geometric transformations

математика

дискретное преобразование

partial transformation         
  •  Original image (based on the map of France)
  •  [[Isometry]]
  • Similarity]]
  •  [[Affine transformation]]
  •  [[Projective transformation]]
  • Inversion]]
  •  [[Conformal transformation]]
  • Equiareal transformation]]
  •  [[Homeomorphism]]
  •  [[Diffeomorphism]]
BIJECTION OF A SET HAVING SOME GEOMETRIC STRUCTURE TO ITSELF OR ANOTHER SUCH SET
Discrete transformation; Continuous transformation; Transformation (combinatorics); Transformation (geometry); Geometrical transformation; Partial transformation; Geometric transformations

математика

частичное преобразование

geometric transformation         
  •  Original image (based on the map of France)
  •  [[Isometry]]
  • Similarity]]
  •  [[Affine transformation]]
  •  [[Projective transformation]]
  • Inversion]]
  •  [[Conformal transformation]]
  • Equiareal transformation]]
  •  [[Homeomorphism]]
  •  [[Diffeomorphism]]
BIJECTION OF A SET HAVING SOME GEOMETRIC STRUCTURE TO ITSELF OR ANOTHER SUCH SET
Discrete transformation; Continuous transformation; Transformation (combinatorics); Transformation (geometry); Geometrical transformation; Partial transformation; Geometric transformations

математика

геометрическое преобразование

algorithm         
  • Alan Turing's statue at [[Bletchley Park]]
  • The example-diagram of Euclid's algorithm from T.L. Heath (1908), with more detail added. Euclid does not go beyond a third measuring and gives no numerical examples. Nicomachus gives the example of 49 and 21: "I subtract the less from the greater; 28 is left; then again I subtract from this the same 21 (for this is possible); 7 is left; I subtract this from 21, 14 is left; from which I again subtract 7 (for this is possible); 7 is left, but 7 cannot be subtracted from 7." Heath comments that "The last phrase is curious, but the meaning of it is obvious enough, as also the meaning of the phrase about ending 'at one and the same number'."(Heath 1908:300).
  • "Inelegant" is a translation of Knuth's version of the algorithm with a subtraction-based remainder-loop replacing his use of division (or a "modulus" instruction). Derived from Knuth 1973:2–4. Depending on the two numbers "Inelegant" may compute the g.c.d. in fewer steps than "Elegant".
  • 1=IF test THEN GOTO step xxx}}, shown as diamond), the unconditional GOTO (rectangle), various assignment operators (rectangle), and HALT (rectangle). Nesting of these structures inside assignment-blocks results in complex diagrams (cf. Tausworthe 1977:100, 114).
  • A graphical expression of Euclid's algorithm to find the greatest common divisor for 1599 and 650
<syntaxhighlight lang="text" highlight="1,5">
 1599 = 650×2 + 299
 650 = 299×2 + 52
 299 = 52×5 + 39
 52 = 39×1 + 13
 39 = 13×3 + 0</syntaxhighlight>
SEQUENCE OF INSTRUCTIONS TO PERFORM A TASK
Algorithmically; Computer algorithm; Properties of algorithms; Algorithim; Algoritmi de Numero Indorum; Algoritmi de numero indorum; Algoritmi De Numero Indorum; Алгоритм; Algorithem; Software logic; Computer algorithms; Encoding Algorithm; Naive algorithm; Naïve algorithm; Algorithm design; Algorithm segment; Algorithmic problem; Algorythm; Rule set; Continuous algorithm; Algorithms; Software-based; Algorithmic method; Algorhthym; Algorthym; Algorhythms; Formalization of algorithms; Mathematical algorithm; Draft:GE8151 Problem Solving and Python Programming; Computational algorithms; Optimization algorithms; Algorithm classification; History of algorithms; Patented algorithms; Algorithmus
algorithm noun math. алгоритм algorithm validation - проверка правильности алгоритма
algorithmic method         
  • Alan Turing's statue at [[Bletchley Park]]
  • The example-diagram of Euclid's algorithm from T.L. Heath (1908), with more detail added. Euclid does not go beyond a third measuring and gives no numerical examples. Nicomachus gives the example of 49 and 21: "I subtract the less from the greater; 28 is left; then again I subtract from this the same 21 (for this is possible); 7 is left; I subtract this from 21, 14 is left; from which I again subtract 7 (for this is possible); 7 is left, but 7 cannot be subtracted from 7." Heath comments that "The last phrase is curious, but the meaning of it is obvious enough, as also the meaning of the phrase about ending 'at one and the same number'."(Heath 1908:300).
  • "Inelegant" is a translation of Knuth's version of the algorithm with a subtraction-based remainder-loop replacing his use of division (or a "modulus" instruction). Derived from Knuth 1973:2–4. Depending on the two numbers "Inelegant" may compute the g.c.d. in fewer steps than "Elegant".
  • 1=IF test THEN GOTO step xxx}}, shown as diamond), the unconditional GOTO (rectangle), various assignment operators (rectangle), and HALT (rectangle). Nesting of these structures inside assignment-blocks results in complex diagrams (cf. Tausworthe 1977:100, 114).
  • A graphical expression of Euclid's algorithm to find the greatest common divisor for 1599 and 650
<syntaxhighlight lang="text" highlight="1,5">
 1599 = 650×2 + 299
 650 = 299×2 + 52
 299 = 52×5 + 39
 52 = 39×1 + 13
 39 = 13×3 + 0</syntaxhighlight>
SEQUENCE OF INSTRUCTIONS TO PERFORM A TASK
Algorithmically; Computer algorithm; Properties of algorithms; Algorithim; Algoritmi de Numero Indorum; Algoritmi de numero indorum; Algoritmi De Numero Indorum; Алгоритм; Algorithem; Software logic; Computer algorithms; Encoding Algorithm; Naive algorithm; Naïve algorithm; Algorithm design; Algorithm segment; Algorithmic problem; Algorythm; Rule set; Continuous algorithm; Algorithms; Software-based; Algorithmic method; Algorhthym; Algorthym; Algorhythms; Formalization of algorithms; Mathematical algorithm; Draft:GE8151 Problem Solving and Python Programming; Computational algorithms; Optimization algorithms; Algorithm classification; History of algorithms; Patented algorithms; Algorithmus

математика

алгоритмический метод

Euclidean algorithm         
  • A 24-by-60 rectangle is covered with ten 12-by-12 square tiles, where 12 is the GCD of 24 and 60. More generally, an ''a''-by-''b'' rectangle can be covered with square tiles of side-length ''c'' only if ''c'' is a common divisor of ''a'' and ''b''.
  • Plot of a linear [[Diophantine equation]], 9''x''&nbsp;+&nbsp;12''y''&nbsp;=&nbsp;483. The solutions are shown as blue circles.
  • cube root of 1]].
  • Subtraction-based animation of the Euclidean algorithm. The initial rectangle has dimensions ''a''&nbsp;=&nbsp;1071 and ''b''&nbsp;=&nbsp;462. Squares of size 462&times;462 are placed within it leaving a 462&times;147 rectangle. This rectangle is tiled with 147&times;147 squares until a 21&times;147 rectangle is left, which in turn is tiled with 21&times;21 squares, leaving no uncovered area. The smallest square size, 21, is the GCD of 1071 and 462.
  • compass]] in a painting of about 1474.
  • ''u''<sup>2</sup> + ''v''<sup>2</sup>}} less than 500
ALGORITHM FOR COMPUTING GREATEST COMMON DIVISORS
Euclids algorithm; Euclidean Algorithm; Euclid's algorithm; Euclid's algorithem; Euclid algorithm; The Euclidean Algorithm; Game of Euclid; Euclid’s Algorithm; Euclid's division algorithm; Generalizations of the Euclidean algorithm; Applications of the Euclidean algorithm
алгоритм Евклида (для нахождения общего наибольшего делителя)
algorithm         
  • Alan Turing's statue at [[Bletchley Park]]
  • The example-diagram of Euclid's algorithm from T.L. Heath (1908), with more detail added. Euclid does not go beyond a third measuring and gives no numerical examples. Nicomachus gives the example of 49 and 21: "I subtract the less from the greater; 28 is left; then again I subtract from this the same 21 (for this is possible); 7 is left; I subtract this from 21, 14 is left; from which I again subtract 7 (for this is possible); 7 is left, but 7 cannot be subtracted from 7." Heath comments that "The last phrase is curious, but the meaning of it is obvious enough, as also the meaning of the phrase about ending 'at one and the same number'."(Heath 1908:300).
  • "Inelegant" is a translation of Knuth's version of the algorithm with a subtraction-based remainder-loop replacing his use of division (or a "modulus" instruction). Derived from Knuth 1973:2–4. Depending on the two numbers "Inelegant" may compute the g.c.d. in fewer steps than "Elegant".
  • 1=IF test THEN GOTO step xxx}}, shown as diamond), the unconditional GOTO (rectangle), various assignment operators (rectangle), and HALT (rectangle). Nesting of these structures inside assignment-blocks results in complex diagrams (cf. Tausworthe 1977:100, 114).
  • A graphical expression of Euclid's algorithm to find the greatest common divisor for 1599 and 650
<syntaxhighlight lang="text" highlight="1,5">
 1599 = 650×2 + 299
 650 = 299×2 + 52
 299 = 52×5 + 39
 52 = 39×1 + 13
 39 = 13×3 + 0</syntaxhighlight>
SEQUENCE OF INSTRUCTIONS TO PERFORM A TASK
Algorithmically; Computer algorithm; Properties of algorithms; Algorithim; Algoritmi de Numero Indorum; Algoritmi de numero indorum; Algoritmi De Numero Indorum; Алгоритм; Algorithem; Software logic; Computer algorithms; Encoding Algorithm; Naive algorithm; Naïve algorithm; Algorithm design; Algorithm segment; Algorithmic problem; Algorythm; Rule set; Continuous algorithm; Algorithms; Software-based; Algorithmic method; Algorhthym; Algorthym; Algorhythms; Formalization of algorithms; Mathematical algorithm; Draft:GE8151 Problem Solving and Python Programming; Computational algorithms; Optimization algorithms; Algorithm classification; History of algorithms; Patented algorithms; Algorithmus

['ælgərið(ə)m]

общая лексика

алгоритм

математическая функция или конечный набор описаний конкретной последовательности действий (правил), необходимых для того, чтобы компьютер или интеллектуальное устройство выполнили за конечное время некоторую задачу, сжатие изображения, выбор оптимального маршрута пересылки пакета или шифрование данных. Алгоритм может быть описан блок-схемой. Термин происходит от имени древнеперсидского математика Мухаммеда ибн Муса аль Харезми, написавшего трактат, посвященный алгоритмическому методу

метод, правило

синоним

ALG

существительное

специальный термин

алгоритм

Определение

трансформация
ТРАНСФОРМ'АЦИЯ, трансформации, ·жен. (·лат. transformatio).
1. Перемена вида, формы чего-нибудь, преобразование, превращение (·книж. ).
2. только ед. Преобразование переменного тока при помощи трансформатора (см. трансформатор
во 2 ·знач.; физ., тех.).
3. только ед. Искусство трансформатора (см. трансформатор
в 3 ·знач.; театр.). Приемы трансформации.

Википедия

Polynomial long division

In algebra, polynomial long division is an algorithm for dividing a polynomial by another polynomial of the same or lower degree, a generalized version of the familiar arithmetic technique called long division. It can be done easily by hand, because it separates an otherwise complex division problem into smaller ones. Sometimes using a shorthand version called synthetic division is faster, with less writing and fewer calculations. Another abbreviated method is polynomial short division (Blomqvist's method).

Polynomial long division is an algorithm that implements the Euclidean division of polynomials, which starting from two polynomials A (the dividend) and B (the divisor) produces, if B is not zero, a quotient Q and a remainder R such that

A = BQ + R,

and either R = 0 or the degree of R is lower than the degree of B. These conditions uniquely define Q and R, which means that Q and R do not depend on the method used to compute them.

The result R = 0 occurs if and only if the polynomial A has B as a factor. Thus long division is a means for testing whether one polynomial has another as a factor, and, if it does, for factoring it out. For example, if a root r of A is known, it can be factored out by dividing A by (x – r).

Как переводится secret transformation algorithm на Русский язык